SUPERSONIC AXISYMMETRIC CONICAL FLOWS WITH CONICAL SHOCKS ADJACENT TO UNIFORM PARALLEL FLOWS

(SVERKHZVUKOVYE OSESIMMETRICHNYE KONICHESKIE TECHENIA S KONICHESKIMI SKACHKAMI, GRANICHASHCHIMI S PARALLELNYM RAVNOMERNYM POTOKOM)

PMM Vol.23, No.2, 1959, pp. 379-383

G. L. GROZDOVSKII (Moscow)

(Received 1 November 1958)

Busemann [1,2] has given the general theory of axisymmetric supersonic conical flows and examined in detail two classes of such flows: flow around a circular cone and flow in a compression diffusor ending in a conical shock. Nikolskii [3] has examined continuously expanding conical flows corresponding to flows around boat-tails of given shape. The present paper considers all the possible classes of supersonic axisymmetric conical flows with conical shock waves adjacent to uniform parallel flows. Two new types of conical flow are obtained: converging flows behind conical shocks and diverging flows in front of conical shocks. These correspond to flows in specially shaped channels (Figs. 2,4).

It is shown that at supersonic speeds there exist four classes of axisymmetric conical flows with conical shock waves adjacent to parallel uniform flows: diverging and converging flows upstream and downstream of conical shocks.

Four possible combinations of conical shocks and regions of uniform parallel velocity u_0 are represented in Fig. 1: diverging or converging conical shock with a free-stream velocity upstream or downstream of the shock.

We shall prove that to each such combination corresponds a special class of (continuous) conical flows, matching the shock wave. We can determine the boundary values of these conical flows, u_1 , v_1 in the hodograph plane with the help of shock polars [4] (Fig. 1).

$$\left(\frac{dv}{du}\right)_1 = \frac{v_1}{u_1 - u_0} \tag{1}$$

Fig. 1.

Axisymmetric conical flows are governed by the usual differential equation of second order [2]

$$v \frac{d^2 v}{du^2} = 1 + \left(\frac{dv}{du}\right)^2 - \frac{2/(x+1)(u+v \, dv/du)^3}{a \cdot 2 - (u^2 + v^2)(x-1)/(x+1)}$$
(2)

and by the following relation between the physical r, x plane and the hodograph u, v plane:

$$\frac{x}{r} = -\frac{dv}{du} \tag{3}$$

Equation (2) has singularities only on the axis and on the circle of the maximum speed W_{\max} (corresponding to expansion to vacuum). Therefore, through every initial point (u_1, v_1) with a given inclination (1) there passes just one integral curve of Equation (2). The radius of curvature of these curves in the vicinity of the point (u_1, v_1) are shown in Fig.1.

Only one side of the integral curve (shown unbroken in Fig. 1) corresponds to the physically sensible case where the conical flow does not penetrate into the uniform flow u_0 . The four types of integral curves *I*, *II*, *III*, and *IV* (Fig. 1) determine the four possible classes of conical flows with conical shocks, adjacent to the parallel flow u_0 .

Fig. 2.

Cases I and IV were examined by Busemann [1,2]. Flows of class II converging flows behind conical shocks and class III - diverging conical flows upstream of conical shocks appear to be new. The integral curves of flows II and III proceed from the initial point (u_1, v_1) to the endpoint (u_2, v_2) , where $d^2v/du^2 = 0$. In the physical plane, the continuous conical flows are bounded by the conical shock, the limiting characteristic (corresponding to u_2 , v_2) and the flow boundaries. Examples of flows II and III are displayed in Figs. 2 and 3 and in Tables 1-5. In the figures

Fig. 3.

x/r	u/a.	v/a.	λ	М	α	8	<u>7</u> 2
-2.144	1.914	_0.400	1.955	2.960	19°46		1.000
-2.129	1.916	-0.395	1.956	2.970	19°42	—11°40	1.030
-2.114	1.918	0.391	1.957	2.971	19°42	—11°32	1.061
-2.100	1.920	0.387	1.958	2.975	19°38	—11°24	1.094
-2.087	1.922	-0.383	1.959	2.979	19°38	11°16	1.128
-2.074	1.924	-0.379	1.960	2.980	19°38		1.164
-2.062	1.926	-0.374	1.962	2.992	19°33	—11°00	1.200
-2.051	1.928	-0.370	1.963	2.996	19°30		1.240
-2.040	1.930	-0.366	1.964	3.000	19°30	(—10°45	1.278
-2.030	1.932	-0.362	1.965	3.004	19°29	—10°37	1.321
-2.020	1.934	-0.358	1.966	3.009	19°28	—10°30	1.364
-2.010	1.936	-0.354	1.968	3.010	19°28	10°22	1.409
-2.002	1.938	-0.350	1.969	3.022	19°20	10°†4	1.457
-1.994	1.940	-0.346	1.970	3.026	19°17	—10°07	1.506
-1.986	1.942	0.342	1.971	3.035	19°15	— 9°59	1.559
-1.980	1.944	-0.338	1.973	3.039	19°13	— 9°57	1.613
-1.973	1.946	-0.334	1.974	3.044	19°12	— 9°45	1.671
-1.967	1.948	-0.330	1.975	3.048	19°09	— 9°:37	1.731
-1.962	1.950	-0.326	1.977	3.050	19°09	— 9°30	1.792
-1.958	1.952	-0.322	1.978	3.061	19°06	— 9°23	1.856
-1.954	1.954	-0.318	1.979	3.066	19°03	9°15	1.928
-1.950	1.956	-0.314	1.981	3.075	18°58	— 9°08	1.999
-1.947	1.958	-0.310	1.982	3.079	18°57	9°01	2.075
—1 .945	1.960	0.307	1.983	3.081	18°56	— 8°54	2.153
-1.943	1.962	-0.303	1.985	3.093	18°54	— 8°47	2.241
-1.941	1.964	-0.299	1.986	3.097	18°51	— 8°39	2.329
-1.938	1.966	l -0.295	1.988	3.100	l 18°50	— 8°32	2.416

TABLE 1. Flow II, $\lambda_0 = 2.1$, $\vartheta_0 = 25^\circ$

TABLE 2. Flow II, $\lambda_0 = 2.1$, $\vartheta_0 = 35^{\circ}$

x/r	u/a•	v/a.	λ	м	α	8	T ₂
$\begin{array}{c} -1.428 \\ -1.415 \\ -1.402 \\ -1.390 \\ -1.377 \\ -1.366 \\ -1.355 \\ -1.345 \\ -1.335 \\ -1.345 \\ -1.326 \\ -1.317 \\ -1.301 \\ -1.289 \\ -1.273 \\ -1.260 \\ -1.249 \\ -1.24$	$\begin{array}{c} 1.651\\ 1.655\\ 1.659\\ 1.663\\ 1.663\\ 1.667\\ 1.671\\ 1.675\\ 1.679\\ 1.683\\ 1.687\\ 1.691\\ 1.695\\ 1.695\\ 1.695\\ 1.699\\ 1.706\\ 1.716\\ 1.726\\ 1.736\\ 1.736\\ 1.736\\ 1.746\end{array}$	$\begin{array}{c} -0.642\\ -0.636\\ -0.630\\ -0.625\\ -0.619\\ -0.614\\ -0.603\\ -0.598\\ -0.592\\ -0.592\\ -0.587\\ -0.582\\ -0.576\\ -0.567\\ -0.555\\ -0.542\\ -0.542\\ -0.529\\ -0.547\end{array}$	1.772 1.773 1.774 1.776 1.778 1.779 1.782 1.784 1.784 1.786 1.787 1.789 1.791 1.798 1.794 1.798 1.803 1.803 1.803 1.814	2.340 2.346 2.349 2.354 2.360 2.365 2.371 2.379 2.385 2.391 2.399 2.405 2.414 2.432 2.449 2.464	25°18 25°13 25°11 25°09 25°06 25°03 24°58 24°58 24°53 24°53 24°53 24°47 24°39 24°39 24°32 24°28 24°20 24°04 24°04	$\begin{array}{c} -21^{\circ}15 \\ -21^{\circ}02 \\ -20^{\circ}49 \\ -20^{\circ}36 \\ -20^{\circ}23 \\ -20^{\circ}23 \\ -20^{\circ}11 \\ -19^{\circ}58 \\ -19^{\circ}58 \\ -19^{\circ}33 \\ -19^{\circ}21 \\ -19^{\circ}09 \\ -18^{\circ}67 \\ -18^{\circ}24 \\ -17^{\circ}55 \\ -17^{\circ}26 \\ -16^{\circ}58 \\$	1.0 1.010 1.039 1.067 1.097 1.130 1.164 1.197 1.233 1.269 1.310 1.349 1.396 1.349 1.396 1.442 1.570 1.706 1.853 2.0992
-1.237 -1.235	1.756	-0.504 -0.494	1.826	2.501 2.518	23°35 23°27		2.211 2.420

535

∞/ r	u/a•	v/a _*	λ	М	α	₽	T ₂	
$\begin{array}{c} -1.000\\ -0.992\\ -0.984\\ -0.973\\ -0.962\\ -0.951\\ -0.951\\ -0.941\\ -0.930\\ -0.917\\ -0.906\\ -0.895\\ -0.882\\ -0.870\\ -0.860\\ -0.850\\ -0.842\\ -0.835\\ -0.842\\ -0.835\\ -0.829\\ -0.824\\ -0.820\\ -0.818\\ -0.816\\ \end{array}$	$\begin{array}{c} 1.351\\ 1.355\\ 1.355\\ 1.359\\ 1.365\\ 1.371\\ 1.371\\ 1.373\\ 1.383\\ 1.390\\ 1.398\\ 1.406\\ 1.414\\ 1.424\\ 1.424\\ 1.424\\ 1.424\\ 1.424\\ 1.424\\ 1.454\\ 1.454\\ 1.464\\ 1.474\\ 1.484\\ 1.494\\ 1.504\\ 1.514\\ 1.524\\ \end{array}$	$\begin{array}{c} -0.749\\ -0.745\\ -0.741\\ -0.735\\ -0.729\\ -0.724\\ -0.718\\ -0.714\\ -0.697\\ -0.689\\ -0.689\\ -0.689\\ -0.663\\ -0.663\\ -0.654\\ -0.663\\ -0.629\\ -0.629\\ -0.621\\ -0.613\\ -0.604\\ -0.596\end{array}$	$\begin{array}{c} 1.545\\ 1.546\\ 1.548\\ 1.551\\ 1.553\\ 1.556\\ 1.558\\ 1.562\\ 1.565\\ 1.569\\ 1.569\\ 1.573\\ 1.569\\ 1.573\\ 1.589\\ 1.578\\ 1.589\\ 1.595\\ 1.600\\ 1.606\\ 1.612\\ 1.618\\ 1.624\\ 1.630\\ 1.637\end{array}$	$\begin{array}{c} 1.818\\ 1.819\\ 1.823\\ 1.827\\ 1.833\\ 1.827\\ 1.839\\ 1.843\\ 1.849\\ 1.857\\ 1.865\\ 1.873\\ 1.885\\ 1.873\\ 1.883\\ 1.896\\ 1.906\\ 1.919\\ 1.929\\ 1.942\\ 1.954\\ 1.967\\ 1.980\\ 1.993\\ 2.009\end{array}$	33°23 33°23 33°16 33°10 33°04 32°58 32°51 32°45 32°45 32°25 32°17 32°36 32°25 32°17 32°04 31°50 31°36 31°36 31°28 31°14 31°0 30°48 30°48 30°20 30°10 29°50	$\begin{array}{c} -29^{\circ} \\ -28^{\circ}48 \\ -28^{\circ}36 \\ -28^{\circ}18 \\ -27^{\circ}26 \\ -27^{\circ}06 \\ -26^{\circ}24 \\ -26^{\circ}21 \\ -26^{\circ}24 \\ -26^{\circ}21 \\ -25^{\circ}33 \\ -25^{\circ}55 \\ -24^{\circ}40 \\ -24^{\circ}14 \\ -23^{\circ}48 \\ -23^{\circ}23 \\ -22^{\circ}59 \\ -22^{\circ}34 \\ -22^{\circ}10 \\ -21^{\circ}47 \\ -21^{\circ}22 \\ \end{array}$	$\begin{array}{c} 1.0\\ 1.016\\ 1.034\\ 1.0611\\ 1.086\\ 1.118\\ 1.148\\ 1.148\\ 1.228\\ 1.275\\ 1.322\\ 1.3856\\ 1.4553\\ 1.530\\ 1.609\\ 1.609\\ 1.690\\ 1.781\\ 1.849\\ 1.984\\ 2.097\\ 2.215\\ 2.355\\ \end{array}$	

TABLE 3. Flow II, $\lambda_0 = 2.1$, $\vartheta_0 = 45^\circ$

TABLE 4.

Flow II, $\lambda_0 = 2.1$, $\vartheta_0 = 55^\circ$

x/r	u/a•	v/a.	λ	М	α	₽	
x/r -0.700 -0.684 -0.670 -0.655 -0.641 -0.628 -0.616 -0.604 -0.593 -0.582 -0.572 -0.563 -0.555 -0.546 -0.537 -0.530	u/a. 1.052 1.062 1.072 1.082 1.092 1.102 1.102 1.112 1.122 1.142 1.142 1.152 1.162 1.172 1.183 1.195 1.207	v/a_{\bullet} -0.734 -0.727 -0.720 -0.713 -0.707 -0.694 -0.688 -0.682 -0.670 -0.665 -0.659 -0.653 -0.646 -0.640	λ 1.283 1.288 1.291 1.297 1.301 1.306 1.311 1.316 1.322 1.327 1.333 1.339 1.345 1.351 1.359 1.369 1.367	M 1.375 1.381 1.394 1.402 1.409 1.409 1.417 1.424 1.432 1.441 1.450 1.459 1.469 1.479 1.491 1.502	α 46°39 46°23 46°13 45°51 45°34 45°55 44°55 44°38 44°12 43°57 43°38 43°17 42°55 42°32 42°08 41°45	b 34°54 34°23 33°53 32°55 32°26 31°58 31°58 31°58 31°31 30°38 30°38 30°13 29°46 29°21 28°54 28°54 28°54 28°54 27°56	r: 1.000 1.0295 1.060 1.092 1.125 1.160 1.196 1.234 1.274 1.316 1.359 1.406 1.455 1.511 1.577 1.646
-0.523 -0.517	1.219	-0.634 -0.627	$1.374 \\ 1.382$	1.515	41°23 40°51	$-27^{\circ}28$ $-27^{\circ}01$	1.719
-0.512 -0.509 -0.506	1.243	-0.621 -0.615	1.390	1.541	40°24 40°06 30°38		1.881
-0.508 -0.504 -0.502	1.279	-0.603 -0.594	1.400	1.581	39°12 38°45	$-25^{\circ}14$ $-24^{\circ}38$	2.168

TABLE 5.

x/r	u/a _*	€/a•	λ	М	α	8	$\overline{r_2}$
$\begin{array}{r} -2.304 \\ -2.372 \\ -2.438 \\ -2.503 \\ -2.565 \\ -2.625 \\ -2.682 \\ -2.736 \\ -2.736 \\ -2.787 \\ -2.834 \\ -2.878 \\ -2.918 \\ -2.918 \\ -2.9984 \\ -3.011 \\ -3.032 \\ -3.049 \\ -3.060 \\ -3.060 \\ -3.066 \\ -2.97 \end{array}$	$\begin{array}{c} 1.718\\ 1.714\\ 1.710\\ 1.716\\ 1.702\\ 1.698\\ 1.694\\ 1.690\\ 1.686\\ 1.682\\ 1.678\\ 1.674\\ 1.670\\ 1.666\\ 1.662\\ 1.658\\ 1.658\\ 1.654\\ 1.650\\ 1.646\\ 1.666\\ 1.$	$\begin{array}{c} 0.510\\ 0.501\\ 0.492\\ 0.482\\ 0.472\\ 0.461\\ 0.451\\ 0.440\\ 0.429\\ 0.418\\ 0.406\\ 0.395\\ 0.383\\ 0.371\\ 0.359\\ 0.347\\ 0.335\\ 0.323\\ 0.311\\ 0.355\end{array}$	$\begin{array}{c} 1.791\\ 1.786\\ 1.779\\ 1.773\\ 1.766\\ 1.759\\ 1.759\\ 1.753\\ 1.746\\ 1.740\\ 1.733\\ 1.746\\ 1.740\\ 1.733\\ 1.720\\ 1.720\\ 1.713\\ 1.707\\ 1.700\\ 1.694\\ 1.687\\ 1.681\\ 1.675\\ 4.675\\ 1.681\\ 1.675\\ 1.675\\ 1.675\\ 1.675\\ 1.675\\ 1.675\\ 1.681\\ 1.675\\ 1.675\\ 1.681\\ 1.681\\ 1.675\\ 1.681\\ 1.681\\ 1.675\\ 1.681\\ 1.681\\ 1.675\\ 1.681\\ 1.681\\ 1.681\\ 1.675\\ 1.681\\ 1.$	$\begin{array}{c} 2.399\\ 2.379\\ 2.362\\ 2.346\\ 2.326\\ 2.307\\ 2.291\\ 2.273\\ 2.257\\ 2.239\\ 2.221\\ 2.205\\ 2.188\\ 2.173\\ 2.156\\ 2.141\\ 2.124\\ 2.109\\ 2.098\\ 2.000\\ \end{array}$	24°39 24°51 25°06 25°13 25°23 25°36 25°51 26°07 26°19 26°53 27°12 27°28 27°35 27°50 28°10 28°18 28°28	16°33 16°18 16°02 15°46 15°29 15°12 14°54 14°54 14°54 14°55 14°16 13°57 13°37 13°17 12°55 12°34 12°12 11°50 11°27 11°04 10°41	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Flow III, $\frac{u_0}{a_*} = 1.496$, $\vartheta_0 = 40^\circ$

all the magnitudes are referred to the critical speed of sound a_{\star} (local M = 1), for instance $U_1 = u_1/a_{\star}$. In Tables 1-5 λ represents the dimensionless velocity, M the Mach number, \propto the Mach angle, θ the angular direction of the flow, r_2 dimensionless radius of family II. An example of combining conical flows and isentropic flows is given in Fig. 4.

Analogous self-similar solutions of uniform unsteady flows have been examined by the author and co-workers [5].

BIBLIOGRAPHY

 Busemann, A., Drucke auf Kegelformige Spitzen bei Bewegung mit Uberschallgeschwindigkeit. ZAMM Vol. 9, No. 6, 1929.

- Busemann, A., Die achsensymmetrische kegelige Uberschallstromung. Luftfahrtforschung, Vol. 19, No. 4, 1942.
- Nikolskii, A.A., Konicheskie osesimmetricheskie sverkhzvukovye gazovye techenia razrezhenia (Axisymmetric supersonic conical flows of an exapnding gas). Collection of theoretical papers in aerodynamics, GIOP, 1957.
- 4. Courant, R. and Friedrichs, K.O., Supersonic flow and shock waves. New York, 1948.
- 5. Grozdovskii, F.L., Diukalov, A.I., Tokarev, V.V. and Tolstykh, A.I., Avtomodelnye dvizhenia gaza s udarnymi volnami, rasprostraniaiushchimisia s postoiannoi skorostiu po pokoiashchemusia gazu (Selfsimilar motions of gas with shock waves, spreading with constant speed into gas at rest). Prikl. Mat. Mekh. Vol. 23, No. 1, 1959.

Translated by M.V.M.